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Figure 1-1 2-D LCD array.
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Figure 1-2 Electromagnetics is at the heart of numerous systems and applications.



Table 1-1 Fundamental SI units.

Dimension Unit Symbol

Length meter m
Mass kilogram kg
Time second s
Electric current ampere A
Temperature kelvin K
Amount of substance mole mol



Table 1-2 Multiple and submultiple prefixes.

Prefix Symbol Magnitude

exa E 1018

peta P 1015

tera T 1012

giga G 109

mega M 106

kilo k 103

milli m 10−3

micro µ 10−6

nano n 10−9

pico p 10−12

femto f 10−15

atto a 10−18
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Figure 1-3 Gravitational forces between two masses.
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Figure 1-4 Gravitational fieldψψψ1 induced by a mass
m1.
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Figure 1-5 Electric forces on two positive point charges
in free space.
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Figure 1-6 Electric fieldE due to chargeq.
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Figure 1-7 Polarization of the atoms of a dielectric
material by a positive chargeq.
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Figure 1-8 Pattern of magnetic field lines around a bar
magnet.
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Figure 1-9 The magnetic field induced by a steady
current flowing in thez direction.



Table 1-3 The three branches of electromagnetics.

Branch Condition Field Quantities (Units)

Electrostatics Stationary charges Electric field intensityE (V/m)
(∂q/∂ t = 0) Electric flux densityD (C/m2)

D = εE

Magnetostatics Steady currents Magnetic flux densityB (T)
(∂ I/∂ t = 0) Magnetic field intensityH (A/m)

B = µH

Dynamics Time-varying currents E, D, B, andH
(time-varying fields) (∂ I/∂ t 6= 0) (E,D) coupled to(B,H)



Table 1-4 Constitutive parameters of materials.

Parameter Units Free-Space Value

Electrical
permittivity ε

F/m ε0 = 8.854×10−12

≈ 1
36π

×10−9

Magnetic
permeability µ H/m µ0 = 4π ×10−7

Conductivity σ S/m 0



u

Figure 1-10 A one-dimensional wave traveling on a
string.



(a)  Circular waves (c)  Spherical wave(b)  Plane and cylindrical waves

Plane wavefront
Two-dimensional wave

Cylindrical wavefront Spherical wavefront

Figure 1-11 Examples of two-dimensional and three-dimensional waves:(a) circular waves on a pond, (b) a plane light
wave exciting a cylindrical light wave through the use of a long narrow slit in an opaque screen, and (c) a sliced section ofa
spherical wave.



(a)  y(x, t) versus x at t = 0

(b)  y(x, t) versus t at x = 0
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Figure 1-12 Plots of y(x,t) = Acos
(

2πt
T − 2πx

λ
)

as a
function of (a)x at t = 0 and (b)t at x = 0.
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Figure 1-13 Plots of y(x,t) = Acos
(2πt

T − 2πx
λ

)
as a

function ofx at (a)t = 0, (b) t = T/4, and (c)t = T/2.
Note that the wave moves in the+x direction with a
velocityup = λ/T .
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Figure 1-14 Plots ofy(0,t) = Acos[(2πt/T)+ φ0] for three different values of the reference phaseφ0.
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Figure 1-15 Plot ofy(x) = (10e−0.2x cosπx) meters. Note that the envelope is bounded between the curve given by 10e−0.2x

and its mirror image.
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Figure 1-16 The electromagnetic spectrum.



Figure 1-17 Individual bands of the radio spectrum and their primary allocations in the US. [See expandable version on
book website: em.eecs.umich.edu.]
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Figure 1-18 Relation between rectangular and polar
representations of a complex numberz = x + jy = |z|e jθ .
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Figure 1-19 Complex numbersV andI in the complex
plane (Example 1-3).
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Figure 1-20 RC circuit connected to a voltage source
υs(t).



Table 1-5 Time-domain sinusoidal functionsz(t) and
their cosine-reference phasor-domain counterparts̃Z,
where z(t) = Re[Z̃e jωt ].

z(t) Z̃

Acosωt A
Acos(ωt + φ0) Ae jφ0

Acos(ωt + β x + φ0) Ae j(β x+φ0)

Ae−αx cos(ωt + β x + φ0) Ae−αxe j(β x+φ0)

Asinωt Ae− jπ/2

Asin(ωt + φ0) Ae j(φ0−π/2)

d
dt

(z(t)) jω Z̃

d
dt

[Acos(ωt + φ0)] jωAe jφ0

∫
z(t) dt

1
jω

Z̃

∫
Asin(ωt + φ0) dt

1
jω

Ae j(φ0−π/2)
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Figure 1-21 RL circuit (Example 1.4).
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Figure P1.7 Wave on a string tied to a wall atx = 0
(Problem 1.7).
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Figure P1.29 Circuit for Problem 1.29.
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Figure 2-1 A transmission line is a two-port network connecting a generator circuit at the sending end to a load at the
receiving end.
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Figure 2-2 Generator connected to an RC circuit
through a transmission line of lengthl.



Dispersionless line

Short dispersive line

Long dispersive line

Figure 2-3 A dispersionless line does not distort
signals passing through it regardless of its length,
whereas a dispersive line distorts the shape of the
input pulses because the different frequency components
propagate at different velocities. The degree of distortion
is proportional to the length of the dispersive line.
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Figure 2-4 A few examples of transverse electromagnetic (TEM) and higher-order transmission lines.
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Figure 2-5 In a coaxial line, the electric field is in the radial direction between the inner and outer conductors, and the
magnetic field forms circles around the inner conductor. Thecoaxial line is a transverse electromagnetic (TEM) transmission
line because both the electric and magnetic fields are orthogonal to the direction of propagation between the generator and
the load.



R' ∆z L' ∆z R' ∆z L' ∆z R' ∆z L' ∆z R' ∆z L' ∆z
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(a)  Parallel-wire representation

(b)  Differential sections each ∆z long

(c)  Each section is represented by an equivalent circuit

G' ∆z C' ∆z G' ∆z C' ∆z G' ∆z C' ∆z G' ∆z C' ∆z

∆z ∆z ∆z ∆z

Figure 2-6 Regardless of its cross-sectional shape, a TEM transmission line is represented by the parallel-wire configuration
shown in (a). To obtain equations relating voltages and currents, the line is subdivided into small differential sections (b), each
of which is then represented by an equivalent circuit (c).



Table 2-1 Transmission-line parametersR′, L′, G′, andC ′ for three types of lines.

Parameter Coaxial Two-Wire Parallel-Plate Unit

R′ Rs

2π

(
1
a

+
1
b

)
2Rs

πd
2Rs

w
Ω/m

L′ µ
2π

ln(b/a)
µ
π

ln

[
(D/d)+

√
(D/d)2−1

]
µh
w

H/m

G′ 2πσ
ln(b/a)

πσ

ln
[
(D/d)+

√
(D/d)2−1

] σw
h

S/m

C ′ 2πε
ln(b/a)

πε

ln
[
(D/d)+

√
(D/d)2−1

] εw
h

F/m

Notes: (1) Refer toFig. 2-4 for definitions of dimensions. (2)µ ,ε, andσ pertain to the
insulating material between the conductors. (3)Rs =

√
π f µc/σc. (4) µc andσc pertain

to the conductors. (5) If(D/d)2 ≫ 1, then ln
[
(D/d)+

√
(D/d)2−1

]
≈ ln(2D/d).
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(ε, µ, σ)

Conductors

Insulating material

Figure 2-7 Cross section of a coaxial line with
inner conductor of radiusa and outer conductor of
radiusb. The conductors have magnetic permeabilityµc,
and conductivityσc, and the spacing material between
the conductors has permittivityε, permeabilityµ , and
conductivityσ .
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Figure 2-8 Equivalent circuit of a two-conductor
transmission line of differential length∆z.
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Figure 2-9 In general, a transmission line can support
two traveling waves, an incident wave (with voltage
and current amplitudes (V+

0 , I+
0 )) traveling along the

+z direction (towards the load) and a reflected wave (with
(V−

0 , I−0 )) traveling along the−z direction (towards the
source).



(a) Longitudinal view

(b) Cross-sectional view with E and B field lines

(c) Microwave circuit

Dielectric
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strip (μc , σc)

Conducting ground plane (μc , σc)
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B

Figure 2-10 Microstrip line: (a) longitudinal view, (b)
cross-sectional view, and (c) circuit example. (Courtesy
of Prof. Gabriel Rebeiz, U. California at San Diego.)
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Figure 2-11 Plots ofZ0 as a function ofs for various
types of dielectric materials.



Table 2-2 Characteristic parameters of transmission lines.

Propagation Phase Characteristic
Constant Velocity Impedance

γ = α + jβ up Z0

General case γ =
√

(R′ + jωL′)(G′ + jωC ′) up = ω/β Z0 =

√
(R′ + jωL′)
(G′ + jωC ′)

Lossless α = 0, β = ω
√

εr/c up = c/
√

εr Z0 =
√

L′/C ′

(R′ = G′ = 0)

Lossless coaxial α = 0, β = ω
√

εr/c up = c/
√

εr Z0 = (60/
√

εr) ln(b/a)

Lossless α = 0, β = ω
√

εr/c up = c/
√

εr Z0 = (120/
√

εr)

two-wire · ln[(D/d)+
√

(D/d)2−1]

Z0 ≈ (120/
√

εr) ln(2D/d),
if D ≫ d

Lossless α = 0, β = ω
√

εr/c up = c/
√

εr Z0 = (120π/
√

εr) (h/w)
parallel-plate

Notes: (1)µ = µ0, ε = εrε0, c = 1/
√µ0ε0, and

√
µ0/ε0 ≈ (120π) Ω, whereεr is the relative permittivity

of insulating material. (2) For coaxial line,a andb are radii of inner and outer conductors. (3) For two-wire
line, d = wire diameter andD = separation between wire centers. (4) For parallel-plate line,w = width
of plate andh = separation between the plates.



Vg

Ii
Zg

Z0 ZL

~

Vi
~~

+

+

VL
~

IL
~

+
Transmission line

Generator Load

z = −l z = 0
z

d = l
d

d = 0

−

− −

Figure 2-12 Transmission line of lengthl connected
on one end to a generator circuit and on the other end
to a load ZL . The load is located atz = 0 and the
generator terminals are atz =−l. Coordinated is defined
asd = −z.



Table 2-3 Magnitude and phase of the reflection coefficient for varioustypes of loads. The normalized load impedance
zL = ZL/Z0 = (R+ jX)/Z0 = r + jx, wherer = R/Z0 and x = X/Z0 are the real and imaginary parts of zL , respectively.

Reflection CoefficientΓ = |Γ|e jθr

Load |Γ| θr

Z0 ZL = (r + jx)Z0

[
(r−1)2 + x2

(r +1)2 + x2

]1/2

tan−1
(

x
r−1

)
− tan−1

(
x

r +1

)

Z0 Z0 0 (no reflection) irrelevant

Z0 (short) 1 ±180◦ (phase opposition)

Z0 (open) 1 0 (in-phase)

Z0 jX = jωL 1 ±180◦−2tan−1 x

Z0 jX =
− j
ωC

1 ±180◦+2tan−1 x
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Figure 2-13 RC load (Example 2-3).



(b)  |I(d)| versus d
~

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4 V

|V(d)|
~

d

d

|I(z)|
~

0
5
10
15
20
25
30 mA

dmax

|V|max
~

|V|min
~

|I|max
~

|I|min
~

Voltage
min max

max min

Current

dmin

λ 3λ
4

λ
4

λ
2

λ 3λ
4

λ
4

λ
2

(a)  |V(d)| versus d
~

Figure 2-14 Standing-wave pattern for (a)|Ṽ (d)| and
(b) |Ĩ(d)| for a lossless transmission line of characteristic
impedanceZ0 = 50 Ω, terminated in a load with a
reflection coefficientΓ = 0.3e j30◦. The magnitude of the
incident wave|V+

0 | = 1 V. The standing-wave ratio is
S = |Ṽ |max/|Ṽ |min = 1.3/0.7= 1.86.
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Figure 2-15 Voltage standing-wave patterns for (a) a
matched load, (b) a short-circuited line, and (c) an open-
circuited line.
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Figure 2-16 Slotted coaxial line (Example 2-6).
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Figure 2-17 The segment to the right of terminalsBB ′

can be replaced with a discrete impedance equal to the
wave impedanceZ(d).
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transmission line can be replaced with the input
impedance of the lineZin.
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Figure 2-19 Transmission line terminated in a short
circuit: (a) schematic representation, (b) normalized
voltage on the line, (c) normalized current, and
(d) normalized input impedance.
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(Example 2-8).
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(d) normalized input impedance.
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Figure 2-22 Configuration for Example 2-10.



Table 2-4 Properties of standing waves on a lossless transmission line.

Voltage maximum |Ṽ |max = |V+
0 |[1+ |Γ|]

Voltage minimum |Ṽ |min = |V+
0 |[1−|Γ|]

Positions of voltage maxima (also
positions of current minima)

dmax =
θrλ
4π

+
nλ
2

, n = 0,1,2, . . .

Position of first maximum (also
position of first current minimum)

dmax =






θrλ
4π

, if 0 ≤ θr ≤ π

θrλ
4π

+
λ
2

, if −π ≤ θr ≤ 0

Positions of voltage minima (also
positions of current maxima)

dmin =
θrλ
4π

+
(2n +1)λ

4
, n = 0,1,2, . . .

Position of first minimum (also
position of first current maximum)

dmin =
λ
4

(
1+

θr

π

)

Input impedance Zin = Z0

(
zL + j tanβ l
1+ jzL tanβ l

)
= Z0

(
1+ Γl

1−Γl

)

Positions at whichZin is real at voltage maxima and minima

Zin at voltage maxima Zin = Z0

(
1+ |Γ|
1−|Γ|

)

Zin at voltage minima Zin = Z0

(
1−|Γ|
1+ |Γ|

)

Zin of short-circuited line Zsc
in = jZ0 tanβ l

Zin of open-circuited line Zoc
in = − jZ0 cotβ l

Zin of line of lengthl = nλ/2 Zin = ZL , n = 0,1,2, . . .

Zin of line of lengthl = λ/4+ nλ/2 Zin = Z2
0/ZL , n = 0,1,2, . . .

Zin of matched line Zin = Z0

|V+
0 |= amplitude of incident wave;Γ = |Γ|e jθr with −π < θr < π ; θr in radians;Γl = Γe− j2β l.
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Figure 2-23 The time-average power reflected by a load
connected to a lossless transmission line is equal to the
incident power multiplied by|Γ|2.
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Figure 2-25 Families ofrL andxL circles within the domain|Γ| ≤ 1.
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Figure 2-26 Point P represents a normalized load impedancezL = 2− j1. The reflection coefficient has a magnitude
|Γ| = OP/OR = 0.45 and an angleθr = −26.6◦. PointR is an arbitrary point on therL = 0 circle (which also is the|Γ| = 1
circle).
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Figure 2-27 PointA represents a normalized loadzL = 2− j1 at 0.287λ on the WTG scale. PointB represents the line input
atd = 0.1λ from the load. AtB, z(d) = 0.6− j0.66.
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Figure 2-28 PointA represents a normalized load withzL = 2+ j1. The standing wave ratio isS = 2.6 (atPmax), the distance
between the load and the first voltage maximum isdmax= (0.25−0.213)λ = 0.037λ , and the distance between the load and
the first voltage minimum isdmin = (0.037+0.25)λ = 0.287λ .
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Load admittance yL

B
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Figure 2-29 Point A represents a normalized loadzL = 0.6 + j1.4. Its corresponding normalized admittance is
yL = 0.25− j0.6, and it is at pointB.
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Figure 2-30 Solution for Example 2-11. PointA represents a normalized loadzL = 0.5+ j1 at 0.135λ on the WTG
scale. AtA, θr = 83◦ and|Γ| = OA/OO′ = 0.62. At B, the standing-wave ratio isS = 4.26. The distance fromA to B gives
dmax= 0.115λ and fromA to C givesdmin = 0.365λ . PointD represents the normalized input impedancezin = 0.28− j0.40,
and pointE represents the normalized input admittanceyin = 1.15+ j1.7.
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Figure 2-31 Solution for Example 2-12. PointA denotes thatS = 3, pointB represents the location of the voltage minimum,
and pointC represents the load at 0.125λ on the WTL scale from pointB. At C, zL = 0.6− j0.8.



Zg

ZLVg
~

Feedline

Generator Load

Matching
network

ZinZ0

M

M'

A

A'
−

+

Figure 2-32 The function of a matching network is
to transform the load impedanceZL such that the input
impedanceZin looking into the network is equal toZ0 of
the feedline.



(b) If ZL = complex: in-series λ/4 transformer inserted

      at d = dmax or d = dmin           

(c) In-parallel insertion of capacitor at distance d1

(a) If ZL is real: in-series λ/4 transformer inserted at AA' 
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Figure 2-33 Five examples of in-series and in-parallel matching networks.



(b) Equivalent circuit
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(a) Transmission-line circuit
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Figure 2-34 Inserting a reactive element with admittanceYs atMM′ modifiesYd to Yin.
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Figure 2-35 Solutions for Example 2-13.
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gL = 1 circle with SWR circle.
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Admittance of
short circuit stub
(Example 2-14)
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Load yL
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Figure 2-36 Solution for pointC of Examples 2-13 and 2-14. PointA is the normalized load withzL = 0.5− j1; pointB is
yL = 0.4+ j0.8. PointC is the intersection of the SWR circle with thegL = 1 circle. The distance fromB toC is d1 = 0.063λ .
The length of the shorted stub (E to F) is l1 = 0.09λ (Example 2-14).
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Figure 2-37 Solution for pointD of Examples 2-13 and 2-14. PointD is the second point of intersection of the SWR circle
and thegL = 1 circle. The distanceB to D givesd2 = 0.207λ , and the distanceE to G givesl2 = 0.410λ (Example 2-14).
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Figure 2-38 Shorted-stub matching network.
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Figure 2-39 A rectangular pulseV (t) of durationτ can be represented as the sum of two step functions of opposite polarities
displaced byτ relative to each other.
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Figure 2-40 At t = 0+, immediately after closing the
switch in the circuit in (a), the circuit can be represented
by the equivalent circuit in (b).
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Figure 2-41 Voltage and current distributions on a lossless transmission line att = T/2, t = 3T/2, andt = 5T/2, due to
a unit step voltage applied to a circuit withRg = 4Z0 andRL = 2Z0. The corresponding reflection coefficients areΓL = 1/3
andΓg = 3/5.
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Figure 2-42 Bounce diagrams for (a) voltage and (b) current. In (c), the voltage variation with time atz = l/4 for a circuit
with Γg = 3/5 andΓL = 1/3 is deduced from the vertical dashed line atl/4 in (a).
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Figure 2-43 Example 2-15.
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Figure 2-44 Time-domain reflectometer of Example
2-16.
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Figure P2.3 Transmission-line model for Problem 2.3.
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Z0 = 300 Ω

R = 600 Ω

Figure P2.20 Circuit for Problem 2.20.
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Figure P2.26 Circuit for Problem 2.26.
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Figure P2.28 Circuit for Problem 2.28.
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Figure P2.33 Circuit for Problem 2.33.
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Figure P2.34 Circuit for Problem 2.34.
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Figure P2.35 Circuit for Problem 2.35.
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Figure P2.43 Antenna configuration for Problem 2.43.
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Figure P2.44 Circuit for Problem 2.44.
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Figure P2.45 Circuit for Problem 2.45.
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Figure P2.50 Circuit for Problem 2.50.
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Figure P2.63 Circuit for Problem 2.63.
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Figure P2.72 Network for Problem 2.72.
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Figure P2.74 Circuit for Problem 2.74.
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Figure P2.77 Voltage waveform for Problems 2.77 and
2.79.
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Figure P2.78 Voltage waveform of Problem 2.78.
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Figure P2.82 Circuit for Problem 2.82.
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Figure 3-1 VectorA = âA has magnitudeA = |A| and
points in the direction of unit vector̂a = A/A.
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Figure 3-2 Cartesian coordinate system: (a) base
vectorsx̂, ŷ, andẑ, and (b) components of vectorA.
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(a)  Parallelogram rule
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Figure 3-3 Vector addition by (a) the parallelogram rule
and (b) the head-to-tail rule.
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Figure 3-4 Distance vectorR12 =
−−→
P1P2 = R2 − R1,

whereR1 and R2 are the position vectors of pointsP1
andP2, respectively.
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Figure 3-5 The angleθAB is the angle betweenA andB,
measured fromA to B between vector tails. The dot
product is positive if 0≤ θAB < 90◦, as in (a), and it is
negative if 90◦ < θAB ≤ 180◦, as in (b).



(a)  Cross product

(b)  Right-hand rule
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Figure 3-6 Cross productA ××× B points in the
direction n̂, which is perpendicular to the plane
containingA andB and defined by the right-hand rule.
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Figure 3-7 Geometry of Example 3-1.



Table 3-1 Summary of vector relations.

Cartesian Cylindrical Spherical
Coordinates Coordinates Coordinates

Coordinate variables x,y,z r,φ ,z R,θ ,φ
Vector representationA = x̂Ax + ŷAy + ẑAz r̂Ar + φ̂φφAφ + ẑAz R̂AR + θ̂θθAθ + φ̂φφAφ

Magnitude of A |A| = +

√
A2

x + A2
y + A2

z
+

√
A2

r + A2
φ + A2

z
+

√
A2

R + A2
θ + A2

φ

Position vector
−→
OP1 = x̂x1 + ŷy1 + ẑz1, r̂r1 + ẑz1, R̂R1,

for P(x1,y1,z1) for P(r1,φ1,z1) for P(R1,θ1,φ1)

Base vectors properties x̂ · x̂ = ŷ · ŷ = ẑ· ẑ = 1 r̂ · r̂ = φ̂φφ ·φ̂φφ = ẑ· ẑ = 1 R̂ · R̂ = θ̂θθ ·θ̂θθ = φ̂φφ ·φ̂φφ = 1
x̂ · ŷ = ŷ · ẑ = ẑ· x̂ = 0 r̂ ·φ̂φφ = φ̂φφ · ẑ = ẑ· r̂ = 0 R̂ ·θ̂θθ = θ̂θθ ·φ̂φφ = φ̂φφ · R̂ = 0

x̂××× ŷ = ẑ r̂ ××× φ̂φφ = ẑ R̂××× θ̂θθ = φ̂φφ
ŷ××× ẑ = x̂ φ̂φφ××× ẑ = r̂ θ̂θθ××× φ̂φφ = R̂
ẑ××× x̂ = ŷ ẑ××× r̂ = φ̂φφ φ̂φφ××× R̂ = θ̂θθ

Dot product A ·B = AxBx + AyBy + AzBz ArBr + Aφ Bφ + AzBz ARBR + Aθ Bθ + Aφ Bφ

Cross product A×××B =

∣∣∣∣∣∣

x̂ ŷ ẑ
Ax Ay Az
Bx By Bz

∣∣∣∣∣∣

∣∣∣∣∣∣

r̂ φ̂φφ ẑ
Ar Aφ Az
Br Bφ Bz

∣∣∣∣∣∣

∣∣∣∣∣∣

R̂ θ̂θθ φ̂φφ
AR Aθ Aφ
BR Bθ Bφ

∣∣∣∣∣∣

Differential length dl = x̂ dx + ŷ dy + ẑ dz r̂ dr + φ̂φφr dφ + ẑ dz R̂ dR + θ̂θθR dθ + φ̂φφRsinθ dφ
Differential surface areas dsx = x̂ dy dz

dsy = ŷ dx dz
dsz = ẑ dx dy

dsr = r̂r dφ dz
dsφ = φ̂φφ dr dz
dsz = ẑr dr dφ

dsR = R̂R2sinθ dθ dφ
dsθ = θ̂θθRsinθ dR dφ
dsφ = φ̂φφR dR dθ

Differential volume dv = dx dy dz r dr dφ dz R2sinθ dR dθ dφ
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Figure 3-8 Differential length, area, and volume in
Cartesian coordinates.



x

φ1

φ

z

r

R1

z

yO

φ = φ1 plane

r = r1 cylinder

ˆ

ˆ

ˆr1

R1

P = (r1, φ1, z1)

z = z1 plane

z1

Figure 3-9 PointP(r1,φ1,z1) in cylindrical coordinates;r1 is the radial distance from the origin in thex–y plane,φ1 is the
angle in thex–y plane measured from thex axis toward they axis, andz1 is the vertical distance from thex–y plane.
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Figure 3-10 Differential areas and volume in
cylindrical coordinates.
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Figure 3-11 Geometry of Example 3-3.
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Figure 3-12 Cylindrical surface of Example 3-4.
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Figure 3-13 Point P(R1,θ1,φ1) in spherical coordi-
nates.
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Figure 3-14 Differential volume in spherical coordi-
nates.
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Figure 3-15 Spherical strip of Example 3-5.
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Figure 3-16 Interrelationships between Cartesian
coordinates(x,y,z) and cylindrical coordinates(r,φ ,z).
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Figure 3-17 Interrelationships between base vectors
(x̂, ŷ) and(r̂ ,φ̂φφ).



Table 3-2 Coordinate transformation relations.

Transformation Coordinate Variables Unit Vectors Vector Components

Cartesian to r = +
√

x2 + y2 r̂ = x̂cosφ + ŷsinφ Ar = Ax cosφ + Ay sinφ
cylindrical φ = tan−1(y/x) φ̂φφ = −x̂sinφ + ŷcosφ Aφ = −Ax sinφ + Ay cosφ

z = z ẑ = ẑ Az = Az

Cylindrical to x = rcosφ x̂ = r̂ cosφ − φ̂φφsinφ Ax = Ar cosφ −Aφ sinφ
Cartesian y = rsinφ ŷ = r̂ sinφ + φ̂φφcosφ Ay = Ar sinφ + Aφ cosφ

z = z ẑ = ẑ Az = Az

Cartesian to R = +
√

x2 + y2 + z2 R̂ = x̂sinθ cosφ AR = Ax sinθ cosφ
spherical + ŷsinθ sinφ + ẑcosθ + Ay sinθ sinφ + Az cosθ

θ = tan−1[ +
√

x2 + y2/z] θ̂θθ = x̂cosθ cosφ Aθ = Ax cosθ cosφ
+ ŷcosθ sinφ − ẑsinθ + Ay cosθ sinφ −Az sinθ

φ = tan−1(y/x) φ̂φφ = −x̂sinφ + ŷcosφ Aφ = −Ax sinφ + Ay cosφ
Spherical to x = Rsinθ cosφ x̂ = R̂sinθ cosφ Ax = AR sinθ cosφ

Cartesian + θ̂θθcosθ cosφ − φ̂φφsinφ + Aθ cosθ cosφ −Aφ sinφ
y = Rsinθ sinφ ŷ = R̂sinθ sinφ Ay = AR sinθ sinφ

+ θ̂θθcosθ sinφ + φ̂φφcosφ + Aθ cosθ sinφ + Aφ cosφ
z = Rcosθ ẑ = R̂cosθ − θ̂θθsinθ Az = AR cosθ −Aθ sinθ

Cylindrical to R = +
√

r2 + z2 R̂ = r̂ sinθ + ẑcosθ AR = Ar sinθ + Az cosθ
spherical θ = tan−1(r/z) θ̂θθ = r̂ cosθ − ẑsinθ Aθ = Ar cosθ −Az sinθ

φ = φ φ̂φφ = φ̂φφ Aφ = Aφ

Spherical to r = Rsinθ r̂ = R̂sinθ + θ̂θθcosθ Ar = AR sinθ + Aθ cosθ
cylindrical φ = φ φ̂φφ = φ̂φφ Aφ = Aφ

z = Rcosθ ẑ = R̂cosθ − θ̂θθsinθ Az = AR cosθ −Aθ sinθ
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Figure 3-18 Interrelationships between(x,y,z) and
(R,θ ,φ).
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Figure 3-19 Differential distance vectordl between
pointsP1 andP2.
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Figure 3-20 Flux lines of the electric fieldE due to a
positive chargeq.
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Figure 3-21 Flux lines of a vector fieldE passing
through a differential rectangular parallelepiped of
volume∆v = ∆x ∆y ∆z.
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Figure 3-22 Circulation is zero for the uniform field
in (a), but it is not zero for the azimuthal field in (b).
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Figure 3-23 The direction of the unit vector̂n is along
the thumb when the other four fingers of the right hand
follow dl.
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Figure 3-24 Geometry of Example 3-12.
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Figure P3.20 Arrow representation for vector field
E = r̂ r (Problem 3.20).
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Figure P3.52 Contour paths for (a) Problem 3.52 and
(b) Problem 3.53.
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Figure P3.55 Problem 3.55.



(a)  Line charge distribution

(b)  Surface charge distribution
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Figure 4-1 Charge distributions for Examples 4-1
and 4-2.
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Figure 4-2 Charges with velocityu moving through a
cross section∆s′ in (a) and∆s in (b).
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Figure 4-3 Electric-field lines due to a chargeq.
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Figure 4-4 The electric fieldE at P due to two charges
is equal to the vector sum ofE1 andE2.
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Figure 4-5 Electric field due to a volume charge
distribution.
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Figure 4-6 Ring of charge with line densityρℓ. (a) The
field dE1 due to infinitesimal segment 1 and (b) the fields
dE1 anddE2 due to segments at diametrically opposite
locations (Example 4-4).
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Figure 4-7 Circular disk of charge with surface charge
densityρs. The electric field atP = (0,0,h) points along
thez direction (Example 4-5).
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Figure 4-8 The integral form of Gauss’s law states that
the outward flux ofD through a surface is proportional to
the enclosed chargeQ.
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Figure 4-9 Electric fieldD due to point chargeq.
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Figure 4-10 Gaussian surface around an infinitely long
line of charge (Example 4-6).
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Figure 4-11 Work done in moving a chargeq a distance
dy against the electric fieldE is dW = qE dy.
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Figure 4-12 In electrostatics, the potential difference
betweenP2 and P1 is the same irrespective of the path
used for calculating the line integral of the electric field
between them.



(a)  Electric dipole

(b)  Electric-field pattern
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Figure 4-13 Electric dipole with dipole momentp = qd
(Example 4-7).



Table 4-1 Conductivity of some common materials
at 20 ◦C.

Material Conductivity , σ (S/m)

Conductors
Silver 6.2×107

Copper 5.8×107

Gold 4.1×107

Aluminum 3.5×107

Iron 107

Mercury 106

Carbon 3×104

Semiconductors
Pure germanium 2.2
Pure silicon 4.4×10−4

Insulators
Glass 10−12

Paraffin 10−15

Mica 10−15

Fused quartz 10−17
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Figure 4-14 Linear resistor of cross sectionA and
lengthl connected to a dc voltage sourceV .
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Figure 4-15 Coaxial cable of Example 4-9.



(a) External Eext = 0

(b) External Eext ≠ 0 (c)  Electric dipole
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Figure 4-16 In the absence of an external electric
field E, the center of the electron cloud is co-located with
the center of the nucleus, but when a field is applied, the
two centers are separated by a distanced.
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Figure 4-17 A dielectric medium polarized by an
external electric fieldE.



Table 4-2 Relative permittivity (dielectric constant) and dielectric strength of common materials.

Material Relative Permittivity , εr Dielectric Strength, Eds (MV/m)

Air (at sea level) 1.0006 3
Petroleum oil 2.1 12
Polystyrene 2.6 20
Glass 4.5–10 25–40
Quartz 3.8–5 30
Bakelite 5 20
Mica 5.4–6 200

ε = εrε0 andε0 = 8.854×10−12 F/m.
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Figure 4-18 Interface between two dielectric media.



Table 4-3 Boundary conditions for the electric fields.

Field Component Any Two Media
Medium 1

Dielectric ε1

Medium 2
Conductor

Tangential E E1t = E2t E1t = E2t = 0

Tangential D D1t/ε1 = D2t/ε2 D1t = D2t = 0

Normal E ε1E1n− ε2E2n = ρs E1n = ρs/ε1 E2n = 0

Normal D D1n−D2n = ρs D1n = ρs D2n = 0

Notes: (1) ρs is the surface charge density at the boundary; (2) normal
components ofE1, D1, E2, andD2 are alonĝn2, the outward normal unit vector
of medium 2.
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Figure 4-19 Application of boundary conditions at the
interface between two dielectric media (Example 4-10).
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Figure 4-20 When a conducting slab is placed in an external electric fieldE1, charges that accumulate on the conductor
surfaces induce an internal electric fieldEi = −E1. Consequently, the total field inside the conductor is zero.
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Figure 4-21 Metal sphere placed in an external electric
field E0.
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Figure 4-22 Boundary between two conducting media.
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Figure 4-24 A dc voltage source connected to a parallel-plate capacitor(Example 4-11).
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Figure 4-25 Coaxial capacitor filled with insulating material of permittivity ε (Example 4-12).
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Figure 4-26 By image theory, a chargeQ above a grounded perfectly conducting plane is equivalent to Q and its image−Q
with the ground plane removed.



(a)  Charge distributions above ground plane (b)  Equivalent distributions
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Figure 4-27 Charge distributions above a conducting plane and their image-method equivalents.
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Figure 4-28 Application of the image method for
findingE at pointP (Example 4-13).
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Figure P4.19 Kite-shaped arrangment of line charges
for Problem 4.19.
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Figure P4.29 Problem 4.29.
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Figure P4.36 Electric potential distributions of
Problem 4.36.
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Figure P4.37 Problem 4.37.
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Figure P4.45 Cross-section of hollow cylinder of
Problem 4.45.
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Figure P4.51 Dielectric slabs in Problem 4.51.
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Figure P4.54 Electron between charged plates of
Problem 4.54.
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Figure P4.56 (a) Capacitor with parallel dielectric
section, and (b) equivalent circuit.
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Figure P4.57 Dielectric sections for Problems 4.57 and
4.59.
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Figure P4.58 (a) Capacitor with parallel dielectric
layers, and (b) equivalent circuit (Problem 4.58).
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Figure P4.61 ChargeQ next to two perpendicular,
grounded, conducting half-planes.
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Figure P4.62 Currents above a conducting plane
(Problem 4.62).
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Figure P4.63 Conducting cylinder above a conducting
plane (Problem 4.63).



Table 5-1 Attributes of electrostatics and magnetostatics.

Attribute Electrostatics Magnetostatics

Sources Stationary chargesρv Steady currentsJ

Fields and Fluxes E andD H andB

Constitutive parameter(s) ε andσ µ

Governing equations
• Differential form

• Integral form

∇ ·D = ρv
∇×××E = 0

n

∫

S
D ·ds= Q

n

∫

C
E ·dl = 0

∇ ·B = 0
∇×××H = J

n

∫

S
B ·ds= 0

n

∫

C
H ·dl = I

Potential ScalarV , with VectorA, with
E = −∇V B = ∇×××A

Energy density we = 1
2εE2 wm = 1

2µH2

Force on chargeq Fe = qE Fm = qu×××B

Circuit element(s) C andR L
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Figure 5-1 The direction of the magnetic force exerted
on a charged particle moving in a magnetic field is (a)
perpendicular to bothB and u and (b) depends on the
charge polarity (positive or negative).
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Figure 5-2 When a slightly flexible vertical wire is
placed in a magnetic field directed into the page (as
denoted by the crosses), it is (a) not deflected when the
current through it is zero, (b) deflected to the left when
I is upward, and (c) deflected to the right whenI is
downward.
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Figure 5-3 In a uniform magnetic field, (a) the net force
on a closed current loop is zero because the integral of
the displacement vectordl over a closed contour is zero,
and (b) the force on a line segment is proportional to the
vector between the end point (Fm = Iℓℓℓ×B).
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Figure 5-4 Semicircular conductor in a uniform field
(Example 5-1).
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Figure 5-5 The forceF acting on a circular disk that
can pivot along thez axis generates a torqueT = d×F
that causes the disk to rotate.
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Figure 5-6 Rectangular loop pivoted along they axis:
(a) front view and (b) bottom view. The combination of
forcesF1 andF3 on the loop generates a torque that tends
to rotate the loop in a clockwise direction as shown in (b).
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Figure 5-7 Rectangular loop in a uniform magnetic
field with flux densityB whose direction is perpendicular
to the rotation axis of the loop, but makes an angleθ with
the loop’s surface normaln̂.
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Figure 5-8 Magnetic fielddH generated by a current
elementI dl. The direction of the field induced at pointP
is opposite to that induced at pointP ′.



(a)  Volume current density J in A/m2

(b)  Surface current density Js in A/m
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Figure 5-9 (a) The total current crossing the cross
sectionS of the cylinder isI =

∫
S J · ds. (b) The total

current flowing across the surface of the conductor is
I =

∫
l Js dl.
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Figure 5-10 Linear conductor of lengthl carrying a
currentI. (a) The fielddH at pointP due to incremental
current elementdl. (b) Limiting anglesθ1 andθ2, each
measured between vectorI dl and the vector connecting
the end of the conductor associated with that angle to
pointP (Example 5-2).
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Figure 5-11 Magnetic field surrounding a long, linear
current-carrying conductor.
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Figure 5-12 Circular loop carrying a currentI
(Example 5-3).



(a)  Electric dipole (b)  Magnetic dipole (c)  Bar magnet
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Figure 5-13 Patterns of (a) the electric field of an electric dipole, (b) the magnetic field of a magnetic dipole, and (c) the
magnetic field of a bar magnet. Far away from the sources, the field patterns are similar in all three cases.
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Figure 5-14 Magnetic forces on parallel current-
carrying conductors.
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Figure 5-15 Whereas (a) the net electric flux through
a closed surface surrounding a charge is not zero, (b) the
net magnetic flux through a closed surface surrounding
one of the poles of a magnet is zero.
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Figure 5-16 Ampère’s law states that the line integral
of H around a closed contourC is equal to the current
traversing the surface bounded by the contour. This is true
for contours (a) and (b), but the line integral ofH is zero
for the contour in (c) because the currentI (denoted by
the symbol⊙) is not enclosed by the contourC.
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Figure 5-17 Infinitely long wire of radiusa carrying
a uniform currentI along the+z direction: (a) general
configuration showing contoursC1 and C2; (b) cross-
sectional view; and (c) a plot ofH versusr (Example 5-4).
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Figure 5-18 Toroidal coil with inner radiusa and outer
radiusb. The wire loops usually are much more closely
spaced than shown in the figure (Example 5-5).
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Figure 5-19 A thin current sheet in thex–y plane
carrying a surface current densityJs= x̂Js (Example 5-6).
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(a)  Orbiting electron (b)  Spinning electron

Figure 5-20 An electron generates (a) an orbital
magnetic momentmo as it rotates around the nucleus and
(b) a spin magnetic momentms, as it spins about its own
axis.



Table 5-2 Properties of magnetic materials.

Diamagnetism Paramagnetism Ferromagnetism

Permanent magnetic No Yes, but weak Yes, and strong
dipole moment

Primary magnetization Electron orbital Electron spin Magnetized
mechanism magnetic moment magnetic moment domains

Direction of induced Opposite Same Hysteresis
magnetic field [seeFig. 5-22]
(relative to external field)

Common substances Bismuth, copper, diamond, Aluminum, calcium, Iron,
gold, lead, mercury, silver, chromium, magnesium, nickel,

silicon niobium, platinum, cobalt
tungsten

Typical value of χm ≈−10−5 ≈ 10−5 |χm| ≫ 1 and hysteretic
Typical value of µr ≈ 1 ≈ 1 |µr| ≫ 1 and hysteretic



(a)  Unmagnetized domains

(b)  Magnetized domains

Figure 5-21 Comparison of (a) unmagnetized and (b)
magnetized domains in a ferromagnetic material.



A2

A1

A3
HO

B

A4

Br

Figure 5-22 Typical hysteresis curve for a ferromag-
netic material.



H

B

H

B

(a)  Hard material (b)  Soft material

Figure 5-23 Comparison of hysteresis curves for (a) a
hard ferromagnetic material and (b) a soft ferromagnetic
material.
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Figure 5-24 Boundary between medium 1 withµ1 and medium 2 withµ2.



(a)  Loosely wound
solenoid

(b)  Tightly wound
solenoid
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Figure 5-25 Magnetic field lines of (a) a loosely wound
solenoid and (b) a tightly wound solenoid.
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Figure 5-26 Solenoid cross section showing geometry
for calculatingH at a pointP on the solenoid axis.



(a)  Parallel-wire transmission line

(b)  Coaxial transmission line
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Figure 5-27 To compute the inductance per unit
length of a two-conductor transmission line, we need to
determine the magnetic flux through the areaS between
the conductors.



a

r
μ l

b

I I

I

z

Outer
conductor

Inner
conductor

Outer
conductor

S

Figure 5-28 Cross-sectional view of coaxial transmis-
sion line (Example 5-7). and denoteH field out of
and into the page, respectively.
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Figure 5-29 Magnetic field lines generated by currentI1
in loop 1 linking surfaceS2 of loop 2.
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Figure 5-30 Toroidal coil with two windings used as a
transformer.
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Figure P5.2 Particle of chargeq projected with
velocity u into a medium with a uniform fieldB
perpendicular tou (Problem 5.2).
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Figure P5.3 Configuration of Problem 5.3.
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Figure P5.4 Hinged rectangular loop of Problem 5.4.
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Figure P5.6 Rectangular loop of Problem 5.6.
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Figure P5.8 Current-carrying linear conductor of
Problem 5.8.
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Figure P5.9 Configuration of Problem 5.9.
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Figure P5.11 Circular loop next to a linear current
(Problem 5.11).
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Figure P5.12 Arrangement for Problem 5.12.
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Figure P5.14 Parallel circular loops of Problem 5.14.
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Figure P5.15 Problem 5.15.
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Figure P5.16 Current loop next to a conducting wire
(Problem 5.16).
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Figure P5.17 Parallel conductors supported by strings
(Problem 5.17).
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Figure P5.18 A linear current source above a current
sheet (Problem 5.18).
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Figure P5.19 Three parallel wires of Problem 5.19.
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Figure P5.20 Long wire carrying currentI2, just above
a square loop carryingI1 (Problem 5.20).
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Figure P5.32 Adjacent magnetic media (Problem
5.32).
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Figure P5.34 Magnetic media separated by the plane
x− y = 1 (Problem 5.34).
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Figure P5.36 Three magnetic media with parallel
interfaces (Problem 5.36).
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Figure P5.40 Loop and wire arrangement for
Problem 5.40.
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Figure P5.41 Linear conductor with currentI1 next to
a circular loop of radiusa at distanced (Problem 5.41).



Table 6-1 Maxwell’s equations.

Reference Differential Form Integral Form

Gauss’s law ∇ ·D = ρv n

∫

S
D ·ds= Q (6.1)

Faraday’s law ∇×××E = −∂B
∂ t

n

∫

C
E ·dl = −

∫

S

∂B
∂ t

·ds (6.2)∗

No magnetic charges ∇ ·B = 0 n

∫

S
B ·ds= 0 (6.3)

(Gauss’s law for magnetism)

Ampère’s law ∇×××H = J+
∂D
∂ t

n

∫

C
H ·dl =

∫

S

(
J+

∂D
∂ t

)
·ds (6.4)

∗For a stationary surfaceS.
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Figure 6-1 The galvanometer (predecessor of the
ammeter) shows a deflection whenever the magnetic flux
passing through the square loop changes with time.



(a)  Loop in a changing B field

(b)  Equivalent circuit
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Figure 6-2 (a) Stationary circular loop in a changing
magnetic fieldB(t), and (b) its equivalent circuit.
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Figure 6-3 Circular loop with N turns in the x–
y plane. The magnetic field isB = B0(ŷ2 + ẑ3)sinωt
(Example 6-1).
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Figure 6-4 Circuit for Example 6-2.



(a)
Magnetic core

(b)

V1(t)

V2(t)

N1

N2

ФI1

I2

RL

Ф

I2

I1

V1(t)

V2(t) RL

Ф

Ф

N1

N2

Figure 6-5 In a transformer, the directions ofI1 andI2
are such that the fluxΦ generated by one of them is
opposite to that generated by the other. The direction of
the secondary winding in (b) is opposite to that in (a), and
so are the direction ofI2 and the polarity ofV2.
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Figure 6-6 Equivalent circuit for the primary side of the
transformer.
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Figure 6-7 Conducting wire moving with velocityu in
a static magnetic field.
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Figure 6-8 Sliding bar with velocityu in a magnetic field that increases linearly withx; that is,B = ẑB0x (Example 6-3).
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Figure 6-9 Moving loop of Example 6-4.
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Figure 6-10 Moving rod of Example 6-5.
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Figure 6-11 Principles of the ac motor and the ac
generator. In (a) the magnetic torque on the wires causes
the loop to rotate, and in (b) the rotating loop generates
an emf.
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Figure 6-12 A loop rotating in a magnetic field induces
an emf.
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Figure 6-13 The displacement currentI2d in the insulating material of the capacitor is equal to the conducting currentI1c in
the wire.



Table 6-2 Boundary conditions for the electric and magnetic fields.

Field Components General Form
Medium 1
Dielectric

Medium 2
Dielectric

Medium 1
Dielectric

Medium 2
Conductor

Tangential E n̂2××× (E1−E2) = 0 E1t = E2t E1t = E2t = 0
Normal D n̂2 ·(D1−D2) = ρs D1n−D2n = ρs D1n = ρs D2n = 0
Tangential H n̂2××× (H1−H2) = Js H1t = H2t H1t = Js H2t = 0
Normal B n̂2 · (B1−B2) = 0 B1n = B2n B1n = B2n = 0
Notes: (1)ρs is the surface charge density at the boundary; (2)Js is the surface current density at the boundary;
(3) normal components of all fields are alongn̂2, the outward unit vector of medium 2; (4)E1t = E2t implies that
the tangential components are equal in magnitude and parallel in direction; (5) direction ofJs is orthogonal to
(H1−H2).
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Figure 6-14 The total current flowing out of a volumev
is equal to the flux of the current densityJ through the
surfaceS, which in turn is equal to the rate of decrease of
the charge enclosed inv.
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Figure 6-15 Kirchhoff’s current law states that the
algebraic sum of all the currents flowing out of a junction
is zero.
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Figure 6-16 Electric potentialV (R) due to a charge
distributionρv over a volumev ′.
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Figure P6.2 Loop of Problem 6.2.
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Figure P6.6 Loop coplanar with long wire (Problem
6.6).
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Figure P6.7 Rotating loop in a magnetic field
(Problem 6.7).
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Figure P6.10 Rotating rod of Problem 6.10.
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Figure P6.13 Rotating circular disk in a magnetic field
(Problem 6.13).
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Figure P6.16 Parallel-plate capacitor containing a lossy
dielectric material (Problem 6.16).



(a)  Spherical wave

(b)  Plane-wave approximation

Radiating
antenna

Spherical
wavefront

Uniform plane wave
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Figure 7-1 Waves radiated by an EM source, such as
a light bulb or an antenna, have spherical wavefronts, as
in (a); to a distant observer, however, the wavefront across
the observer’s aperture appears approximately planar, as
in (b).
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Figure 7-2 The atmospheric layer bounded by the
ionosphere at the top and Earth’s surface at the bottom
forms a guiding structure for the propagation of radio
waves in the HF band.
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Figure 7-3 A guided electromagnetic wave traveling
in a coaxial transmission line consists of time-varying
electric and magnetic fields in the dielectric medium
between the inner and outer conductors.
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Figure 7-4 A transverse electromagnetic (TEM) wave
propagating in the direction̂k = ẑ. For all TEM waves,̂k
is parallel toE×××H.
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Figure 7-5 Spatial variations ofE andH at t = 0 for the
plane wave of Example 7-1.
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Figure 7-6 The wave(E,H) is equivalent to the sum
of two waves, one with fields(E+
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y ) and another with

(E+
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x ), with both traveling in the+z direction.
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Figure 7-7 Linearly polarized wave traveling in the
+z direction (out of the page).



(a)  LHC polarization

(b)  RHC polarization
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Figure 7-8 Circularly polarized plane waves propagat-
ing in the+z direction (out of the page).
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Figure 7-9 Right-hand circularly polarized wave
radiated by a helical antenna.
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Figure 7-10 Right-hand circularly polarized wave of
Example 7-2.
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Figure 7-11 Polarization ellipse in thex–y plane, with
the wave traveling in thez direction (out of the page).
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Figure 7-12 Polarization states for various combinations of the polarization angles(γ,χ) for a wave traveling out of the
page.
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Figure 7-13 Attenuation of the magnitude of̃Ex(z) with
distancez. The skin depthδs is the value ofz at which
|Ẽx(z)|/|Ex0| = e−1, or z = δs = 1/α.



Table 7-1 Expressions forα, β , ηc, up, and λ for various types of media.

Lossless Low-loss Good
Any Medium Medium Medium Conductor Units

(σ = 0) (ε ′′/ε ′ ≪ 1) (ε ′′/ε ′ ≫ 1)

α = ω


µε ′

2



√

1+

(
ε ′′
ε ′

)2

−1






1/2

0
σ
2

√
µ
ε

√
π f µσ (Np/m)

β = ω


µε ′

2



√

1+

(
ε ′′
ε ′

)2

+1






1/2

ω√µε ω√µε
√

π f µσ (rad/m)

ηc =

√
µ
ε ′

(
1− j

ε ′′

ε ′

)−1/2 √
µ
ε

√
µ
ε

(1+ j)
α
σ

(Ω)

up = ω/β 1/
√µε 1/

√µε
√

4π f/µσ (m/s)

λ = 2π/β = up/ f up/ f up/ f up/ f (m)

Notes: ε ′ = ε; ε ′′ = σ/ω ; in free space,ε = ε0, µ = µ0; in practice, a material is considered a
low-loss medium ifε ′′/ε ′ = σ/ωε < 0.01 and a good conducting medium ifε ′′/ε ′ > 100.



(a)  dc case

(b)  ac case
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Figure 7-14 Current densityJ in a conducting wire is
(a) uniform across its cross section in the dc case, but (b)
in the ac case,J is highest along the wire’s perimeter.
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Figure 7-15 Exponential decay of current densitỹJx(z)
with z in a solid conductor. The total current flowing
through (a) a section of widthw extending betweenz = 0
andz = ∞ is equivalent to (b) a constant current densityJ0
flowing through a section of depthδs.
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Figure 7-16 The inner conductor of the coaxial cable
in (a) is represented in (b) by a planar conductor of width
2πa and depthδs, as if its skin has been cut along its
length on the bottom side and then unfurled into a planar
geometry.
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Figure 7-17 EM power flow through an aperture.



Sun

S

S

S

S

S

S

Rs

Area of
spherical surface

Asph = 4πRs
2

Earth

(a)  Radiated solar power

(b)  Earth intercepted power

S

Sun

Ae = πRe
2

Earth

Figure 7-18 Solar radiation intercepted by (a) a
spherical surface of radiusRs, and (b) Earth’s surface
(Example 7-5).



Table 7-2 Power ratios in natural numbers and in
decibels.

G G [dB]

10x 10x dB
4 6 dB
2 3 dB
1 0 dB
0.5 −3 dB
0.25 −6 dB
0.1 −10 dB

10−3 −30 dB
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Figure P7.39 Imaginary rectangular box of Prob-
lems 7.39 and 7.40.
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Figure 8-1 Signal path between a shipboard transmitter
(Tx) and a submarine receiver (Rx).



(b)  Boundary between different media
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(a)  Boundary between transmission lines

Figure 8-2 Discontinuity between two different
transmission lines is analogous to that between two
dissimilar media.
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Figure 8-3 Ray representation of wave reflection and transmission at (a) normal incidence and (b) oblique incidence, and
(c) wavefront representation of oblique incidence.
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Figure 8-4 The two dielectric media separated by the
x–y plane in (a) can be represented by the transmission-
line analogue in (b).



Table 8-1 Analogy between plane-wave equations for normal incidenceand transmission-line equations, both under
lossless conditions.

Plane Wave [Fig. 8-4(a)] Transmission Line [Fig. 8-4(b)]

Ẽ1(z) = x̂E i
0(e

− jk1z + Γe jk1z) (8.11a) Ṽ1(z) = V +
0 (e− jβ1z + Γe jβ1z) (8.11b)

H̃1(z) = ŷ
E i

0

η1
(e− jk1z −Γe jk1z) (8.12a) Ĩ1(z) =

V+
0

Z01
(e− jβ1z −Γe jβ1z) (8.12b)

Ẽ2(z) = x̂τE i
0e− jk2z (8.13a) Ṽ2(z) = τV+

0 e− jβ2z (8.13b)

H̃2(z) = ŷτ
E i

0

η2
e− jk2z (8.14a) Ĩ2(z) = τ

V+
0

Z02
e− jβ2z (8.14b)

Γ = (η2−η1)/(η2 + η1) Γ = (Z02−Z01)/(Z02+ Z01)

τ = 1+ Γ τ = 1+ Γ

k1 = ω√µ1ε1 , k2 = ω√µ2ε2 β1 = ω√µ1ε1 , β2 = ω√µ2ε2

η1 =
√

µ1/ε1 , η2 =
√

µ2/ε2 Z01 andZ02 depend on
transmission-line parameters
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Figure 8-5 Antenna beam “looking” through an aircraft
radome of thicknessd (Example 8-1).
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Figure 8-6 (a) Planar section of the radome of
Fig. 8-5at an expanded scale and (b) its transmission-line
equivalent model (Example 8-1).
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Figure 8-7 Normal incidence at a planar boundary
between two lossy media.
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of Example 8-3.
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(a)  n1 < n2 (b)  n1 > n2

(c)  n1 > n2 and θi = θc 
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Figure 8-10 Snell’s laws state thatθr = θi and
sinθt = (n1/n2)sinθi . Refraction is (a) inward ifn1 < n2
and (b) outward ifn1 > n2; and (c) the refraction angle is
90◦ if n1 > n2 andθi is equal to or greater than the critical
angleθc = sin−1(n2/n1).
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Figure 8-11 The exit angleθ3 is equal to the incidence
angleθ1 if the dielectric slab has parallel boundaries and
is surrounded by media with the same index of refraction
on both sides (Example 8-4).
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Table 8-2 Expressions forΓ, τ, R, and T for wave incidence from a medium with intrinsic impedanceη1 onto a
medium with intrinsic impedance η2. Anglesθi and θt are the angles of incidence and transmission, respectively.

Normal Incidence Perpendicular Parallel
Property θi = θt = 0 Polarization Polarization

Reflection coefficient Γ =
η2−η1

η2 + η1
Γ⊥ =

η2cosθi −η1cosθt

η2cosθi + η1cosθt
Γ‖ =

η2cosθt −η1cosθi

η2cosθt + η1cosθi

Transmission coefficient τ =
2η2

η2 + η1
τ⊥ =

2η2cosθi

η2 cosθi + η1cosθt
τ‖ =

2η2cosθi

η2cosθt + η1cosθi

Relation of Γ to τ τ = 1+ Γ τ⊥ = 1+ Γ⊥ τ‖ = (1+ Γ‖)
cosθi

cosθt

Reflectivity R = |Γ|2 R⊥ = |Γ⊥|2 R‖ = |Γ‖|2

Transmissivity T = |τ|2
(

η1

η2

)
T⊥ = |τ⊥|2

η1cosθt

η2cosθi
T‖ = |τ‖|2

η1cosθt

η2cosθi

Relation of R to T T = 1−R T⊥ = 1−R⊥ T‖ = 1−R‖

Notes: (1) sinθt =
√

µ1ε1/µ2ε2 sinθi ; (2) η1 =
√

µ1/ε1; (3) η2 =
√

µ2/ε2; (4) for nonmagnetic media,
η2/η1 = n1/n2.
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Figure 8-20 Wave travel by successive reflections in (a)
an optical fiber, (b) a circular metal waveguide, and (c) a
rectangular metal waveguide.
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Table 8-3 Wave properties for TE and TM modes in a rectangular waveguide with dimensionsa× b, filled with a
dielectric material with constitutive parameters ε and µ . The TEM case, shown for reference, pertains to plane-wave
propagation in an unbounded medium.

Rectangular Waveguides Plane Wave

TE Modes TM Modes TEM Mode

Ẽx = jω µ
k2
c

(
nπ
b

)
H0cos

(
mπx

a

)
sin

( nπy
b

)
e− jβz Ẽx = − jβ

k2
c

(
mπ
a

)
E0cos

(
mπx

a

)
sin

(nπy
b

)
e− jβz Ẽx = Ex0e− jβz

Ẽy = − jω µ
k2
c

(
mπ
a

)
H0sin

(
mπx

a

)
cos

(nπy
b

)
e− jβz Ẽy = − jβ

k2
c

(
nπ
b

)
E0sin

(
mπx

a

)
cos

(nπy
b

)
e− jβz Ẽy = Ey0e− jβz

Ẽz = 0 Ẽz = E0sin
(

mπx
a

)
sin

( nπy
b

)
e− jβz Ẽz = 0

H̃x = −Ẽy/ZTE H̃x = −Ẽy/ZTM H̃x = −Ẽy/η

H̃y = Ẽx/ZTE H̃y = Ẽx/ZTM H̃y = Ẽx/η

H̃z = H0cos
(

mπx
a

)
cos

(nπy
b

)
e− jβz H̃z = 0 H̃z = 0

ZTE = η/
√

1− ( fc/ f )2 ZTM = η
√

1− ( fc/ f )2 η =
√

µ/ε

Properties Common to TE and TM Modes

fc =
up0

2

√(m
a

)2
+

(n
b

)2
fc = not

applicable
β = k

√
1− ( fc/ f )2 k = ω√µε

up =
ω
β

= up0
/
√

1− ( fc/ f )2 up0
= 1/

√µε
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Figure 8-24 Cutoff frequencies for TE and TM modes
in a hollow rectangular waveguide witha = 3 cm and
b = 2 cm (Example 8-9).
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Figure 8-25 The amplitude-modulated high-frequency
waveform in (b) is the product of the Gaussian-shaped
pulse with the sinusoidal high-frequency carrier in (a).
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equivalent cone over which all the radiation of the actual
antenna is concentrated with uniform intensity equal to
the maximum of the actual pattern.
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Figure P9.29 Satellite repeater system.
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Figure P9.28 Problem 9.28.
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Figure P9.45 Three-element array of Problem 9.48.
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Figure 10-1 Elements of a satellite communication
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Figure 10-2 Orbits of geostationary satellites.
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Figure 10-3 Satellite of massms in orbit around Earth. For the orbit to be geostationary, thedistanceR0 between the satellite
and Earth’s center should be 42,164 km. At the equator, this corresponds to an altitude of 35,786 km above Earth’s surface.



Table 10-1 Communications satellite frequency alloca-
tions.

Downlink Uplink
Frequency Frequency

Use (MHz) (MHz)

Fixed Service
Commercial 3,700–4,200 5,925–6,425

(C-band)
Military (X-band) 7,250–7,750 7,900–8,400
Commercial

(K-band)
Domestic (USA) 11,700–12,200 14,000–14,500
International 10,950–11,200 27,500–31,000

Mobile Service
Maritime 1,535–1,542.5 1,635–1,644
Aeronautical 1,543.5–1,558.8 1,645–1,660

Broadcast Service
2,500–2,535 2,655–2,690

11,700–12,750

Telemetry, Tracking, and Command
137–138, 401–402, 1,525–1,540
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Figure 10-4 Elements of a 12-channel (transponder) communications system.
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Figure 10-5 Basic operation of a ferrite circulator.
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Figure 10-6 Polarization diversity is used to increase
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Figure 10-8 Spot and multibeam satellite antenna sys-
tems for coverage of defined areas on Earth’s surface.
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Figure 10-9 Basic block diagram of a radar system.
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Figure 10-10 A pulse radar transmits a continuous train
of RF pulses at a repetition frequencyfp.
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Figure 10-11 Radar beam viewing two targets at ranges
R1 andR2.
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Figure 10-12 The azimuth resolution∆x at a rangeR is
equal toβ R.
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Figure 10-13 The output of a radar receiver as a function of time.
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Figure 10-14 Bistatic radar system viewing a target with radar cross section (RCS)σt.
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Figure 10-15 A wave radiated from a point source
when (a) stationary and (b) moving. The wave is
compressed in the direction of motion, spread out in the
opposite direction, and unaffected in the direction normal
to motion.
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Figure 10-16 Transmitter with radial velocityur approaching a stationary receiver.
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Figure 10-17 The Doppler frequency shift is negative
for a receding target (0≤ θ ≤ 90◦), as in (a), and positive
for an approaching target (90◦ ≤ θ ≤ 180◦), as in (b).
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Figure 10-18 Antenna feeding arrangement for an
amplitude-comparison monopulse radar: (a) feed horns
and (b) connection to phasing network.
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Figure 10-19 A target observed by two overlapping
beams of a monopulse radar.
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Figure 10-20 Functionality of the phasing network in (a) the transmit mode and (b) the receive mode for the elevation-
difference channel.
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Figure 10-21 Monopulse antenna (a) sum pattern, (b)
elevation-difference pattern, and (c) angle error signal.


